THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5000 Analysis I 2015-2016
Problem Set 6: Differentiation

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by

$$
f(x)= \begin{cases}x^{2} & \text { if } x \in \mathbb{Q} \\ 0 & \text { otherwise }\end{cases}
$$

Show that f is differentiable at 0 , and find $f^{\prime}(0)$.
Is f differentiable at any point other than $x=0$? Why?
2. Prove that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is an even function which is differentiable, then the derivative f^{\prime} is an odd function. Also prove that if $g: \mathbb{R} \rightarrow \mathbb{R}$ is an odd function which is differentiable, then the derivative g^{\prime} is an even function.
3. Use the Mean Value Theorem to prove that $|\sin x-\sin y| \leq|x-y|$ for all $x, y \in \mathbb{R}$.
4. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$ and differentiable in (a, b). Show that if $\lim _{x \rightarrow a} f^{\prime}(x)=A$, then $f^{\prime}(a)$ exists and equals to A. (Hint: Use the definition of $f^{\prime}(a)$ and the Mean Value Theorem.)
5. Give an example of a uniformly continuous function on $[0,1]$ that is differentiable on $(0,1)$ but whose derivative is not bounded on $(0,1)$.
6. Let I be an interval. Prove that if f is differentiable on I and if the derivative f^{\prime} is bounded on I, then f satisfies a Lipschitz condition on I.
7. Suppose that $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are two differentiable functions and that

$$
\left\{\begin{array}{l}
f^{\prime}(x)=g^{\prime}(x) \text { and } g^{\prime}(x)=-f(x) \text { for all } x \in \mathbb{R} \\
f(0)=0 \text { and } g(0)=1
\end{array}\right.
$$

Prove that

$$
[f(x)]^{2}+\left[g^{\prime}(x)\right]^{2}=1 \text { for all } x \in \mathbb{R}
$$

(Remark: By using the results in ordinary differential equations, we can prove the existence and uniqueness of the functions f and g. Then we can define $\cos x$ and $\sin x$ to be $f(x)$ and $g(x)$ respectively.)
8. A differentiable function $f: I \rightarrow \mathbb{R}$ is said to be uniformly differentiable on $I:=[a, b]$ if for every $\epsilon>0$ there exist $\delta>0$ such that if $0<|x-y|<\delta$ and $x, y \in I$, then

$$
\left|\frac{f(x)-f(y)}{x-y}-f^{\prime}(x)\right|<\epsilon .
$$

Show that if f is uniformly differentiable on I, then f^{\prime} is continuous on I.

